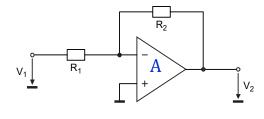
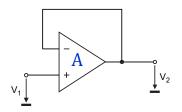

Imperfections de l'AO

Electronique I

Adil KOUKAB


Rappel: AmpliOp idéal + réaction négatif -> Régime linéaire

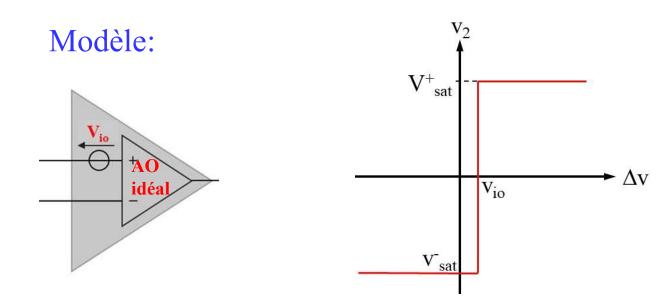

G: Gains boucle férmée = $\frac{v_2}{v_1}$ $G_{N_INV} = \frac{v_2}{v_1} = 1 + \frac{R_2}{R_1}$

AO idéal:

$$\begin{cases} R_{in} \to \infty \Rightarrow i+=i-\\ A \to \infty \Rightarrow (\mathbf{AO} + \mathbf{ReacNeg}) \Rightarrow v^{+} = v^{-}\\ R_{out} \to 0 \Rightarrow \text{Gain indep de } R_{L} \end{cases}$$

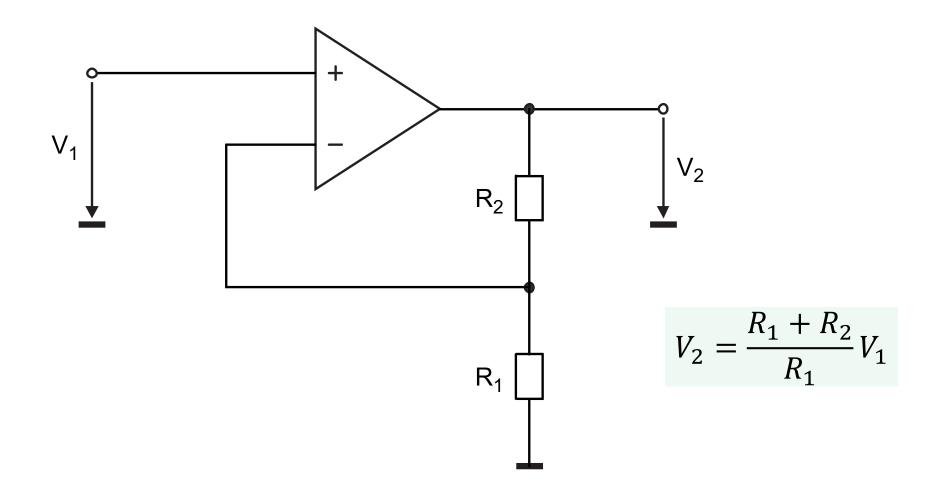
$$G_{INV} = \frac{v_2}{v_1} = -\frac{R_2}{R_1}$$

$$G_{N_Suiv} = \frac{v_2}{v_1} = 1$$

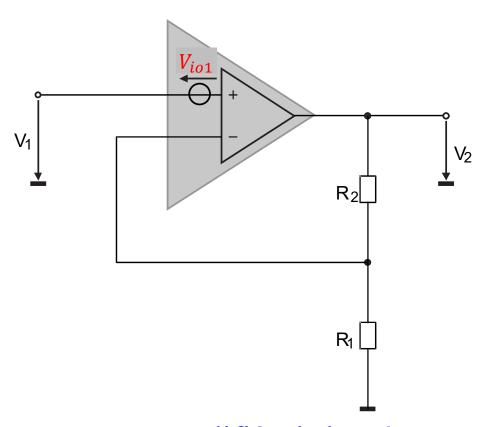

Imperfections d'un AO

- Imperfection1: Tension de décalage «Offset» et chaine d'amplification
- Imperfection 2 : Courants de polarisation
- Intérêt du Gain infini de l'AO
- Imperfection 3: Limitation fréquentielle en petits signaux (BW)
- Imperfection 4: Limitation en fréquence grand signaux
 - (Taux de variation limité: "slew-rate")

Imperfections 1: Offset

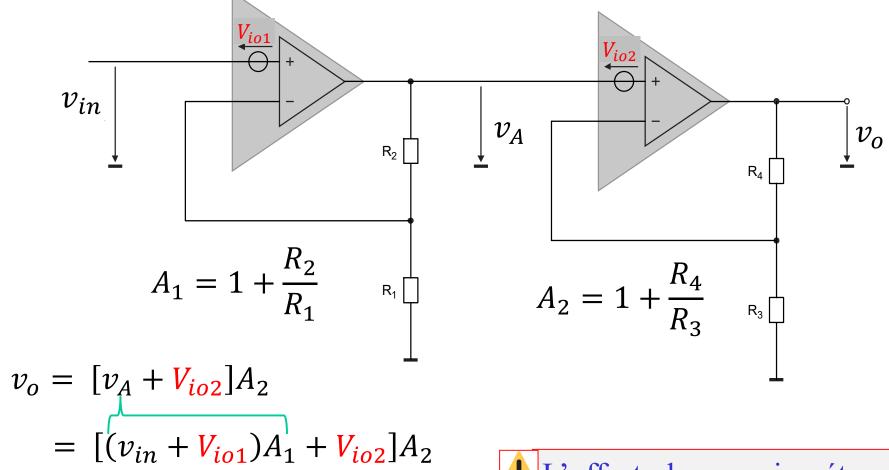

- La tension de décalage ou « offset » est due à un défaut de symétrie causé par à un pareillement imparfait des composants de l'AO réel.
- Elle se manifeste par une tension Vio continue positive ou négative (DC) entre ses entrées + et .

- Les fabricants donnent une valeur absolue maximale de l'offset $V_{io,max}$
 - (Ex: 7.5 mV pour LM741; 3 mV pour TL072; 10 mV pour LF356;)



Amplificateur opérationnel idéal

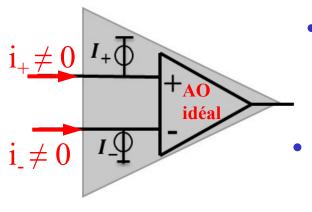
Amplificateur opérationnel avec: Offset


$$V_{2} = \frac{R_{1} + R_{2}}{R_{1}} (V_{+})$$

$$V_{2} = \frac{R_{1} + R_{2}}{R_{1}} (V_{1} + V_{io1})$$

- V_{offset} est amplifiée de la même manière que le signal utile.
- Elle engendre une tension continue indésirable à la sortie
- Son effet est d'autant plus néfaste que le gain est élevé.

L'offset dans une chaîne d'amplification



$$v_o = A_1 A_2 v_{in} + A_1 A_2 V_{io1} + A_2 V_{io2}$$

L'offset du premier étage est dominant (car $\times A_1 A_2$)

Imperfection 2: Courants de polarisation

• L'AO réel a une impédance d'entré très grande mais pas infinie

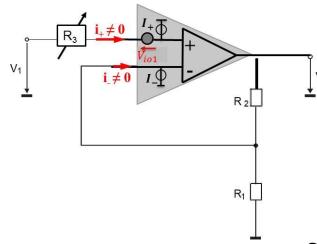
$$\rightarrow$$
 $i_{+/-} \neq 0$

Fabrication monolithique → i₊ et i₋ proches mais pas égaux

$$\rightarrow |i_+ - i_-| << |i_{\pm}|$$

Les fabricants donnent donc deux caractéristiques de l'AO:

Input bias current: i₊ et i₋ (~80 nA pour LM741)


Input offset current: $|i_+ - i_-|$ (~20 nA pour LM741)

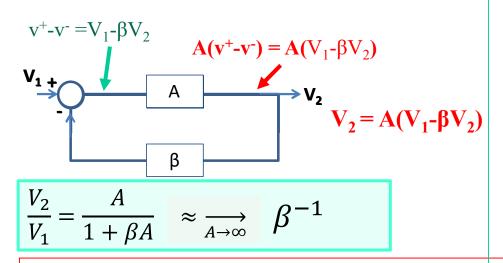
- V_{io} et $i_{+/-}$ induisent une tension continue non désirée en sortie.
- V_{io} et $i_{+/-}$ sont indépendants \rightarrow se superposent.

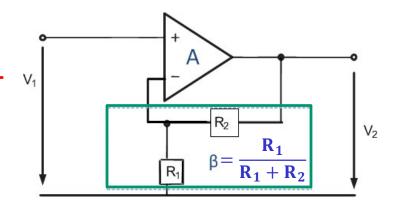
Exo: 1- Calculer la tension continue à l'offset et aux courants de polarisation pour le circuit ci- desous? Choisir R_3 pour la minimiser? (noter que $|i_+-i_-| << |i_+|$)

En utilisant la superposition, on démontre que:

$$V_2 = \frac{R_1 + R_2}{R_1} V_1 + \frac{R_1 + R_2}{R_1} V_{io1} - \frac{R_1 + R_2}{R_1} R_3 i_+ + R_2 i_-$$

Si
$$\frac{R_1 + R_2}{R_1} R_3 = R_2$$
 c.à.d. $R_3 = R_2 // R_1$, V_2 devient:


$$V_2 = \frac{R_1 + R_2}{R_1} V_1 + \frac{R_1 + R_2}{R_1} V_{io1} + R_2 (i_- - i_+)$$


Puisque $(i_- - i_+) \ll i_+$ et i_- cela minimise effectivement l'impact des courants de polarisation

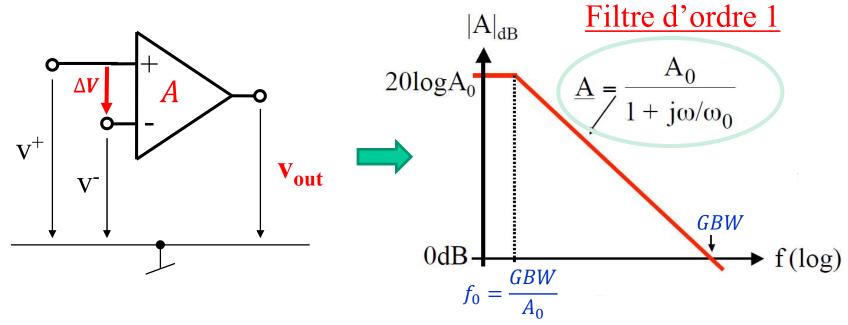
Intérêt du Gain infini de l'AO

Model de l'Ampli à contre réaction

$$V_2 = A(V^+ - V^-)$$
 avec $V^+ = V_1$ et $V^- = \beta V_2$

$$\frac{V_2}{V_1} = \frac{A}{1 + A \underbrace{\frac{R_1}{R_1 + R_2}}_{\beta}} \xrightarrow{A \to \infty} 1 + \frac{R_2}{R_1} = \beta^{-1}$$

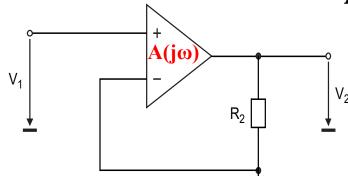
V₂/V₁: Gain Boucle Fermée; Aβ: Gain Boucle Ouverte; β: Facteur de Contre Réaction


- Le gain boucle fermée est déterminé par β^{-1} , si A très grand $(1/A\beta \rightarrow 0)$.
- β^{-1} (à la différence de A) est peu sensible aux variations des procédés de fabrication et de température, du fait qu'il est exprimé comme un rapport de deux résistances.

la contre-réaction rend donc le gain boucle fermée peu sensible aux imperfections de l'AO pour autant que le gain de ce dernier soit suffisamment élevé.

Imperfection 3: Limitation fréquentielle en petits signaux

- Un AO réel a un gain élevé en basse fréquence (A_0), mais qui diminue de -20dB/décade au delà d'une certaine fréquence de coupure f_0
- On définie le paramètre **GBW** (**Gain** · **Bandwidth** [**Hz**]) comme étant le produit A_0 . f_0 .
- GBW est aussi la fréquence pour laquelle le gain est égal à 1 (0dB)


GBW est une caractéristique de l'AmpliOp donnée par le fabricants:

Ex: GBW (LM741) \approx 1 MHz et GBW (LM356) \approx 5MHz.

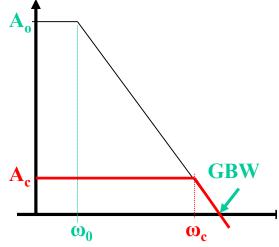
Effet de la contre réaction sur BW

•
$$A(j\omega) = \frac{A_0}{1+j\omega/\omega_0}$$

•
$$V_2 = A(j\omega)(V^+ - V^-)$$
 avec $V^+ = V_1$ et $V^- = \frac{R_1}{R_1 + R_2} V_2$
• $V_2 = A(j\omega) \left(V_1 - \frac{R_1}{R_1 + R_2} V_2 \right)$

•
$$V_2 = A(j\omega) \left(V_1 - \frac{R_1}{R_1 + R_2} V_2 \right)$$

$$\Rightarrow \frac{V_2}{V_1} = A_c (j\omega) = \frac{A(j\omega)}{1 + A(j\omega) \frac{R_1}{R_1 + R_2}} = \frac{\frac{A_0}{1 + j\omega/\omega_0}}{1 + \frac{A_0}{1 + j\omega/\omega_0} \frac{R_1}{R_1 + R_2}}$$


$$\left(\frac{\frac{A_0}{1 + \frac{R_1}{R_1 + R_2} A_0}}{\frac{1}{A_c}}\right) \frac{1}{1 + j \omega / \left(\frac{1 + \frac{R_1}{R_1 + R_2} A_0}{\omega_c}\right) \omega_0} = A_c \frac{1}{1 + j \omega / \omega_c}$$

Donc l'ampli Non-Inv \equiv à un filtre passe-bas d'ordre 1 de $\frac{A_0}{a}$ réponse $A_c(j\omega) = A_c \frac{1}{1+i\omega/\omega} avec$

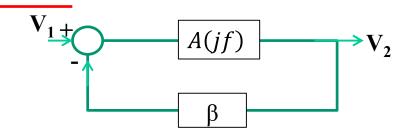
•
$$A_c = \frac{A_0}{1 + \frac{R_1}{R_1 + R_2} A_0} = \frac{A_0}{1 + \beta A_0} \left(\xrightarrow{A_0 \to \infty} \beta^{-1} = 1 + \frac{R_2}{R_1} \right)$$
 et

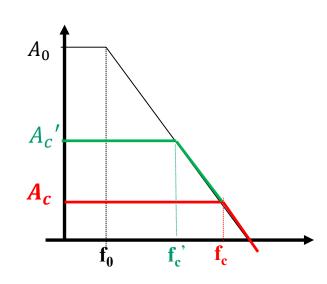
•
$$\omega_c = \left(\mathbf{1} + \frac{\mathbf{R_1}}{\mathbf{R_1} + \mathbf{R_2}} \mathbf{A_0}\right) \omega_0 = (\mathbf{1} + \boldsymbol{\beta} \mathbf{A_0}) \omega_b$$

$$Rq: A_c f_c = A_0 f_b = GBW (= 1MHz) \rightarrow \langle f_c \approx 10kHz \rangle$$

Effet de la contre réaction sur BW: Model générique

$\frac{\text{Filtre d'ordre 1}}{A(jf)} = \frac{A_0}{1 + i f/f_0}$


Gain boucle fermée


$$A_{c}(jf) = \frac{V_{2}}{V_{1}} = \frac{A(jf)}{1 + \beta A(jf)} = \frac{\frac{A_{0}}{1 + jf/f_{0}}}{1 + \beta \frac{A_{0}}{1 + jf/f_{0}}}$$

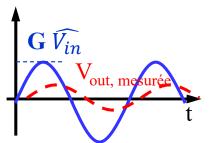
$$\frac{A_{0}}{1 + \beta A_{0}} \frac{1}{1 + jf/(1 + \beta A_{0})f_{b}} = A_{c} \frac{1}{1 + jf/f_{c}}$$

Filtre d'ordre

$$Avec\ A_c = \frac{A_0}{1 + \beta A_0} \text{ et } f_c = (1 + \beta A_0) f_0$$

$$Rq: A_c f_c = A_0 f_0 = GBW = Cst$$

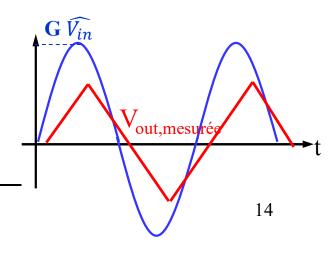
- Appliquée à l'AO la contre-réaction permet de troquer du gain contre de la bande passante.
- GBW est une constante (donnée du fabriquant) \rightarrow si on connait A_0 on connait ω_0 et vice-versa.


Limitation en fréquence «Grands Signaux»: Taux de variation limité: "slew-rate"

- Slew Rate $(Sr = (dVout/dt)_{Max})$ = Taux de variation maximale possible de la tension à la sortie du AO
- $Sr = 0.5 \text{ V/}\mu\text{s}$ pour le LM 741, 13 V/ μs pour TL 071 et 072, 12 V/ μs pour LF356
- Cette limitation est due au courant finie qui charge et décharge le capacités internes de l'AO.
- Conséquences pratiques du Sr

Ex: soit le signal de sortie théorique:

$$V_{\text{out}} = \mathbf{G} \ \widehat{V_{in}} sin(\omega t)$$
 $\rightarrow \frac{dV_{out}}{dt}$


 $\operatorname{Si} A_0 \widehat{V_{in}} \omega < \operatorname{Sr} \rightarrow \operatorname{régime}$ $\operatorname{Si} A_0 \widehat{V_{in}} \omega < \operatorname{Sr} \rightarrow \operatorname{régime}$ petits signaux petits signaux si $\omega > \omega_{\rm RW} \rightarrow$ Atténuation si $\omega < \omega_{\rm RW} \rightarrow {\rm pas}$ sans distorsion d'atténuation ni distorsion

Electronique I -A. Koukab

 \rightarrow Distorsion (même si $\omega < \omega_{RW}$)

V_{out,mesurée}